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1. Introduction

The gauge-gravity duality is a valuable tool to investigate the dynamics of gauge theories.

Many nonperturbative aspects of gauge theory have been elucidated, mostly for the super-

symmetric cases, like N = 4 SYM, where many correlations functions have been analyzed.

The thermodynamic and qualitative properties of a large class of gauge theories have been

obtained. But until recently, only the properties of gauge invariant states were obtained

this way. In [1] however, the amplitudes for scattering of gluons (coloured states) in N = 4

SYM were described using AdS-CFT.

N = 4 SYM and QCD have quite different dynamics at large distances but there are

similarities at short distances. The perturbative SYM scattering amplitudes have many

features in common with their QCD counterparts, e.g. the SYM loop amplitudes can be

considered as components of QCD loop amplitudes (see [2] and references therein). It is

thus important to learn as much as possible about the amplitudes of N = 4 SYM, and

hope that we can extract information that will be relevant for understanding the QCD

physics at hadron colliders.
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Alday and Maldacena [1] proposed a method for computing gluon scattering amplitudes

at strong coupling in N = 4 SYM. The essential feature that allowed for the calculation

of this coloured amplitude is the factorization of all colour indices into the tree amplitude,

A = AtreeM, the scalar function M being calculated from the areas of worldsheets of a

classical string in a T dual AdS space. Classical strings are familiar in AdS-CFT from

the calculation of Wilson loops. Also, large semiclassical strings correspond to gauge

theory operators with large angular momentum [3], or large R charge and spin chain

momentum [4], whereas quantum strings correspond to large R charge [5].1

Now, the string worldsheet has boundary conditions defined by the gluon states. Gluon

states are open strings that end on an infrared D3-brane. The ‘T duality on AdS space’ was

used as a mathematical trick, mapping the open string worldsheet with vertex operators

defined by external gauge theory momenta to an open string worldsheet with usual Dirichlet

boundary conditions, defined by lightlike segments forming a closed contour, but the AdS

space is still noncompact. After the T duality, the boundary and the infrared region are

interchanged and so the brane is located on the boundary in the T dual AdS, giving formally

the same calculation as for a lightlike Wilson loop. The D3-brane is an infrared regulator

in the gauge theory, needed since gluon amplitudes are IR divergent.

Using this prescription, [1] computed the 4-point gluon scattering amplitude at strong

coupling in N = 4 at large N , and compared it with the conjectured exact result of Bern,

Dixon, and Smirnov (BDS) [8] (see also [9]). The BDS conjecture states that the planar

contributions to scattering amplitudes of N = 4 SYM have an iterative structure (at

least, for MHV amplitudes): the higher-loop amplitudes are determined by the one-loop

amplitude and some functions of the coupling constant.

An n-point amplitude factorizes in two parts: an universal function depending just on

momentum invariants times the tree-level amplitude that contains all colors and helicity

factors. Unlike in QCD where the scattering amplitudes are very complicated objects, in

a SUSY theory the kinematic part is a simple exponential. The four gluon amplitude in

N = 4 SYM contains an infrared divergent part plus a finite part that is an elementary

function (log squared) of Mandelstam kinematic variables, and is determined by only two

functions of the ’t Hooft coupling. Thus the only nontrivial information is encoded in these

two functions, one of which is related to the cusp anomalous dimension.2

The four gluon scattering amplitude computed at strong coupling has the same form

as the BDS amplitude at weak coupling with the cusp anomalous value obtained from the

semiclassical analysis of [3](see also [11]). Even if the factorization does not hold order

by order in the coupling constant for non-MHV amplitudes, it holds again in the strong

1The conventional AdS-CFT correspondence relates the strong coupling regime of N = 4 SYM to the

supergravity limit of string theory on the AdS5 ×S
5 background for small operators. The analysis of string

theory requires large gauge theory operators or, in the spirit of the original ’t Hooft string worldsheet

proposal, analyzing the zero coupling limit [6, 7].
2A nice physical interpretation of the cusp anomaly at weak coupling within the radial quantization

approach was given in [10]. That is a quantum transition amplitude for a test particle propagating in

the radial time and the angular coordinates. Thus, this is an important hint that at strong coupling the

correspondent quantity is the classical action for a particle propagating on the same phase space.
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coupling limit [1, 12].

One possible reason for the simple form of the conjectured BDS result was explored

in [13]: hidden conformal symmetry of the amplitude, not related in an obvious way with

the conformal symmetry of the N = 4 SYM. Motivated by the work of Alday and Malda-

cena the authors of [13, 14] investigated the lightlike Wilson loop at weak coupling. They

concluded that the duality between gluon amplitudes and Wilson loops is also valid at weak

coupling. This is possible evidence for the hidden conformal symmetry of the N = 4 SYM.

Other recent papers discussing aspects of the Alday-Maldacena proposal are [15 – 18].

In this paper we extend the work of [1] by analyzing 6-point amplitudes. It was ex-

plained in [19, 20] that 4- and 5-point amplitudes are fixed by conformal symmetry, and

therefore any real test of the BDS conjecture will come for n = 6 point amplitudes and

higher (a conformal Ward identity found in [19] fixes the form of the 4- and 5-point ampli-

tudes, but not higher). In fact, [20] found that a large n calculation gives dissagreement.

It is therefore very important to analyze 6-point amplitudes.

We first calculate the strong coupling prediction of the 6-point amplitudes using the

BDS conjecture. We then construct 6-point AdS amplitudes by using symmetries and

cutting and gluing the 4-point solution. We will see that the lines where we cut and

glue actually contain extra boundary conditions, and we will try to interpret them in

gauge theory. We will find an interesting relation of these amplitudes to the unitarity cut

procedure. The gauge theory 6-point amplitudes we are studying do not have the most

general external momenta, and in fact we will obtain a Regge-like behaviour for amplitudes

when some of the momentum invariants go to infinity, while others are fixed, similar to the

4-point function behaviour checked by [15].

We will also treat for completeness an 8-point AdS amplitude that can be obtained by

the same methods, and interpret it in gauge theory. Finally, we will look at the collinear

behaviour of the 6- and 5-point amplitudes to go to the 4-point amplitude. The prescription

of [1] implies that it should be possible to get a smooth limit, and we comment how that

could be achieved.

The paper is organized as follows: In section 2 we review the calculation of [1]. In

section 3 we calculate 6-point amplitudes: first we specify the field theory results, and then

we calculate the AdS result and compare. In section 4 we interpret the mismatch and give

a gauge theory interpretation of the result. In section 5 we calculate the 8-point amplitude

and in section 6 we analyze the collinear limit. An appendix gives some calculational details.

2. Review

Alday and Maldacena [1] describe the 4 dimensional 2 to 2 scattering amplitude for gluons

in N = 4 SYM. For 2 to 2 scattering of massless particles, there are 4 momenta, each

with E = |~p| (kµ = (E, p1, p2, p3)). In the center of mass frame, conservation of energy

and momentum implies that they are all equal, Ei = |~pi| = k, i = 1, 2, 3, 4. As usual,

we make all momenta incoming, by changing the sign of the outgoing momenta, so that
∑

i ki = 0, and the outgoing momenta have now negative energy. Since the two incoming

spatial momenta are parallel, and the two outgoing ones are also parallel (we are in the
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center of mass frame), we can arange them in a parallelogram, and define k1, k2, k3, k4

cyclically around the parallelogram. Then the Mandelstam variables are

s = −(k1 + k2)
2 = −4k2 sin2 φ/2; t = −(k1 + k4)

2 = −4k2 cos2 φ/2; u = −s − t (2.1)

where φ is the angle between ~p1 and ~p2, thus s and t are the diagonals of the parallelogram,

and s = t corresponds to a square.

In [8], a conjecture was put forth for the gluon scattering amplitudes in N = 4 SYM.

We will describe it in more detail in the following section, but for 4-point amplitudes, it is

given as follows. The first observation is that the amplitude factorizes as

A = AtreeM(s, t) (2.2)

where Atree contains all the color and polarization factors, and M(s, t) is a common func-

tion. Then M(s, t) is written as

M = (Adiv,s)
2(Adiv,t)

2exp

{

f(λ)

8
ln2 s

t
+ const.

}

(2.3)

= exp

{

−f(λ)

8

(

ln2 µ2

−s
+ ln2 µ2

−t

)

− g(λ)

2

(

ln
µ2

−s
+ ln

µ2

−t

)

+
f(λ)

8
ln2 s

t
+ const.

}

where f(λ) is the same function appearing in the dimension of twist two operators.

Since the color and polarization factors factorize, we can choose any ordering of k1, k2,

k3, k4 to calculate M(s, t) (choosing a different ordering will result in a different Atree, but

the same M(s, t)). In particular, we will choose the one defined above, with k1, k2, k3, k4

defined cyclically around the parallelogram of spatial momenta.

The universal function M(s, t) was obtained in [1] from an AdS space calculation as

follows. One starts with AdS5 space with the metric

ds2 = R2 d~x2
3+1 + dz2

z2
(2.4)

A Gross-Mende-type calculation [21] for the scattering of open strings dual to the gluons

shows that the amplitude is dominated by a classical string worldsheet with vertex operator

insertions at the boundary. A ‘T duality’

∂αyµ = iw2(z)ǫαβ∂βxµ (2.5)

where neither the initial or the final coordinates are compact gives again AdS space in

coordinates

ds2 = R2 dyµdyµ + dr2

r2
; r =

R2

z
(2.6)

In these T dual coordinates one obtains a classical string worldsheet ending on the

boundary at r = 0 on a polygon made of lightlike segments dual to the momenta,

∆yµ = 2πkµ (2.7)

Since y0 is dual to energy, increasing y0 correponds to incoming momenta and decreasing

y0 to outgoing momenta.
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Then the calculation of M(s, t) in these T dual variables is formally the same as for

the lightlike Wilson loop, i.e.

M(s, t) = eiSstring ∼ e−
R2

2π
A = e−

√

λ
2π

A (2.8)

where A is the area of the minimal string worldsheet, which has Euclidean signature.

In a static gauge y1 = u1, y2 = u2 (where u1, u2 are worldsheet coordinates), the string

action is

iS = −R2

2π

∫

dy1dy2

√

1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

r2
(2.9)

whereas in a conformal gauge, the action is

iS = −R2

2π

∫

du1du2
1

2

∂r∂r + ∂yµ∂yµ

r2
(2.10)

The lightlike contour that the Wilson loop ends on depends on the ordering of external

momenta. As we mentioned, we can choose any ordering to calculate M(s, t), but if we

choose the ordering where k1, k2 are incoming and k3, k4 are outgoing, the projection of the

Wilson loop on the y1, y2 plane is singular. It is composed of 2 lines, one for the incoming

momenta and one for the outgoing ones. That means that choosing y1 = u1, y2 = u2 will

be problematic. That is the reason that we choose to define the ordering of k1, k2, k3, k4

cyclically around the parallelogram of momenta (thus k1 and k3 are incoming, and k2 and

k4 are outgoing).

The worldsheet corresponding to s = t ends on a lightlike polygon, whose projection

in the y1, y2 plane is a square, thus the boundary conditions are

r(±1, y2) = r(y1,±1) = 0, y0(±1, y2) = ±y2; y0(y1,±1) = ±y1 (2.11)

and the solution in static gauge is

y0(y1, y2) = y1y2, r(y1, y2) =
√

(1 − y2
1)(1 − y2

2) (2.12)

or in conformal gauge

y1 = tanh u1; y2 = tanh u2; y0 = tanh u1 tanh u2; r =
1

cosh u1 cosh u2
(2.13)

This solution turns out to be the same solution found in [22] for a worldsheet ending on a

single lightlike cusp (used for a lightlike Wilson loop calculation).

The solution at s 6= t is obtained by a boost with b = vγ in the embedding coordinates

of AdS, giving

y1 =
tanh u1

1 + b tanh u1 tanh u2
y2 =

tanh u2

1 + b tanh u1 tanh u2

y0 =

√
1 + b2 tanh u1 tanh u2

1 + b tanh u1 tanh u2
r =

1

cosh u1 cosh u2

1

1 + b tanh u1 tanh u2
(2.14)
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from which one extracts (after a rescaling of momenta by a)

s =
−8a2/(2π)2

(1 − b)2
; t =

−8a2/(2π)2

(1 + b)2
(2.15)

The two parameters a and b are enough to characterize the amplitude, which is a function

of only s and t.

The action on this solution is divergent, indicative of the IR divergence of the gluon

amplitude. To deal with it, one introduces a dimensional regularization, D = 4−2ǫ, giving

the T dual metric

ds2 =
√

cDλD

(

dy2
D + dr2

r2+ǫ

)

(2.16)

the regularized approximate solution

rǫ ∼
√

1 + ǫ/2rǫ=0; yµ
ǫ ≃ yµ

ǫ=0 (2.17)

and the action (using that (∂r∂r + ∂yµ∂yµ)/(2r2)|ǫ=0 = 1)

S =

√
λDcD

2π

∫ Lǫ=0

rǫ
= i

√
λDcD

2π

∫ +∞

−∞

du1du2r
−ǫ
ǫ=0 (2.18)

[

1+
ǫ

2

(

∂r∂r

2r2
|ǫ=0−1

)

− ǫ2

4

(

∂r∂r

2r2
|ǫ=0 − 1

)

− ǫ2

4

]

The AdS calculation then reproduces the BDS result, giving the values of f(λ) and

g(λ) at strong coupling

f =

√
λ

π
; g =

√
λ

2π
(1 − ln 2) (2.19)

3. Six-point scattering amplitudes

In this section we present six-point scattering amplitudes at strong coupling — these so-

lutions did not appear previously in the literature. We start in the first subsection with a

review of BDS conjecture — following [13, 14, 16] we also present a pictorial representation

at weak coupling for the finite part of a six-point amplitude. Then, in the next subsection

we explictly construct and discuss in detail our new lightlike Wilson loop solutions in AdS.

3.1 Six-point functions: field theory

Bern, Dixon and Smirnov [8] have conjectured more general formulas for the gluon ampli-

tudes, applicable to any n-point function.

The first observation is that the same factorization of color and polarization factors

applies for any n-point amplitude, and we have

An = Atree
n Mn(ǫ) (3.1)

where Mn only depends on momentum invariants and the dependence on ǫ indicates that

we use the dimensional regularization. The supersymmetry constraints the kinematic de-

pendent part to take a nice exponential form — specifically, Mn(ǫ) can be factorized in an

– 6 –
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infrared divergent part, a finite part, and a coupling-dependent constant:

Mn(ǫ) = MIR
n (ǫ)Fn(ǫ)C(λ) = exp

[

∞
∑

l=1

alf (l)(ǫ)Î(1)
n (lǫ)

]

h̃n(ǫ)

= exp

[

∞
∑

l=1

alf l(ǫ)Î(1)
n (lǫ) +

∞
∑

l=1

alf (l)(ǫ)F (1)
n (lǫ) +

∞
∑

l=1

alh(l)
n (ǫ)

]

(3.2)

The constant a is a function of ’t Hooft coupling, λ, and the dimensional regularization

parameter ǫ:

a = λ(4πe−γ)−ǫ (3.3)

where γ is the Euler’s constant. In the limit ǫ → 0, the constant a becomes ’t Hooft

coupling λ. The functions f (l)(ǫ) have a perturbative expansion

f (l)(ǫ) = f
(l)
0 + f

(l)
1 ǫ + f

(l)
2 ǫ2 (3.4)

where the first term in expansion, f
(l)
0 , is related to the cusp anomalous dimension for

an l-loop. Here M
(1)
n (ǫ) = I

(1)
n (ǫ) + F

(1)
n (ǫ) is the 1-loop amplitude divided by the tree

amplitude, thus up to constants and functions of λ the amplitude is the exponential of the

1-loop amplitude. The IR divergent part, MIR
n (ǫ), is controlled by the factor Î

(1)
n (ǫ) that

contains 1/ǫ2 IR divergencies. The finite part Fn(ǫ) that is controlled by the factor F
(1)
n (ǫ)

is known as the finite remainder (it is finite as ǫ → 0), and h
(l)
n (ǫ) are constant factors

which do not depend on kinematics.

The divergent factor is

Î(1)
n (ǫ) = −1

2

1

ǫ2

n
∑

i=1

(

µ2

−si,i+1

)ǫ

=− 1

2ǫ2

n
∑

i=1

[

1+ǫ ln

(

µ2

−si,i+1

)

+
ǫ2

2

(

ln

(

µ2

−si,i+1

))2

+· · ·
]

(3.5)

where si,i+1 ≡ (ki + ki+1)
2 are Mandelstam variables for any neighboring pair of gluons

and µ is the renormalization scale parameter. Then the amplitude is expanded in ǫ as

lnMn(ǫ) =
A2

ǫ2
+

A1

ǫ
+ A0

−1

4

n
∑

i=1

∞
∑

l=1

f
(l)
0 al

(

ln

(

µ2

−si,i+1

))2

− 1

2

n
∑

i=1

∞
∑

l=1

f
(l)
1

l
al ln

(

µ2

−si,i+1

)

+

∞
∑

l=1

f
(l)
0 alF (1)

n (0) + O(ǫ) (3.6)

where

A2 = −n

2

∞
∑

l=1

f
(l)
0

l2
al

A1 = −n

2

∞
∑

l=1

1

l2
f

(l)
1 al − 1

2

∞
∑

l=1

f
(l)
0

l
al

n
∑

i=1

ln

(

µ2

−si,i+1

)

A0 = −n

2

∞
∑

l=1

f
(l)
2

l2
al
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Following [17], we define

f(λ) = 4

∞
∑

l=1

f
(l)
0 al; g(λ) = 2

∞
∑

l=1

f
(l)
1

l
al (3.7)

where f(λ) and g(λ) are the same functions as defined for the 4-point function. In the

limit ǫ → 0, f(λ) = 4
∑∞

l=1 f
(l)
0 λl is the all-loop cusp anomalous dimension that appears

in the dimension of twist two operators. We then obtain for the finite (in ǫ, but still IR

divergent in µ) part of the amplitude

lnMn|ǫ0 = A0 −
1

16
f(λ)

n
∑

i=1

(

ln

(

µ2

−si,i+1

))2

− g(λ)

4

n
∑

i=1

ln

(

µ2

−si,i+1

)

+
f(λ)

4
F (1)

n (0)

(3.8)

Finally, the finite remainder for n > 4 is given by (for n = 4, F
(1)
n (0) = 1/2 ln2 s/t):

f(λ)

4
F (1)

n (0) =
f(λ)

4

1

2

n
∑

i=1

gn,i (3.9)

where the functions gn,i contain dilogarithms and squares of ordinary logarithms

gn,i = −
[n/2]−1
∑

r=2

ln

(

−t
[r]
i

−t
[r+1]
i

)

ln

(

−t
[r]
i+1

−t
[r+1]
i

)

+ Dn,i + Ln,i +
3

2
ζ2 (3.10)

Here we used the ‘generalized’ Mandelstam variables t
[r]
i ≡ (ki + · · · + ki+r−1)

2 (mod n for

the index i). The others terms are given by

• n = 2m + 1

D2m+1 = −
m−1
∑

r=2

Li2

(

1 − t
[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)

(3.11)

L2m+1 = −1

2
ln

(

−t
[m]
i

−t
[m]
i+m+1

)

ln

(

−t
[m]
i+1

−t
[m]
i+m

)

(3.12)

• n = 2m

D2m = −
m−2
∑

r=2

Li2

(

1 − t
[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)

− 1

2
Li2

(

1 − t
[m−1]
i t

[m+1]
i−1

t
[m]
i t

[m]
i−1

)

(3.13)

L2m = −1

4
ln

(

−t
[m]
i

−t
[m]
i+m+1

)

ln

(

−t
[m]
i+1

−t
[m]
i+m

)

(3.14)
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and some useful dilogarithmic relations are

Li2(z) =

∞
∑

k=1

zk

k2
, Li2(0) = 0, Li2(1) = ζ2 =

π2

6
(3.15)

We can now use the input of the 4-point amplitude AdS calculation of Alday and

Maldacena, and substitute the large λ value of f(λ) and g(λ) in the above formulas. Since

f(λ) =

√
λ

π
= 4

∑

l≥1

alf
(l)
0

g(λ) =

√
λ

2π
(1 − ln 2) = 2

∑

l≥1

alf
(l)
1

l
(3.16)

by acting with (λd/dλ)−1 once on g and once and twice on f , we get

1

4
f−1(λ) ≡

∑

l≥1

alf
(l)
0

l
=

√
λ

2π
;

1

4
f−2(λ) ≡

∑

l≥1

alf
(l)
0

l2
=

√
λ

π

1

2
g−1(λ) ≡

∑

l≥1

alf
(l)
1

l2
=

√
λ

2π
(1 − ln 2) (3.17)

Substituting these functions in the amplitude, we get at large coupling (ignoring terms

O(ǫ))

lnMn = A0 −
n
√

λ

2π

1

ǫ2
− 1

ǫ

[

n
√

λ

4π
(1−ln 2)+

√
λ

4π

n
∑

i=1

ln
µ2

−si,i+1

]

−
√

λ

16π

n
∑

i=1

ln2

(

µ2

−si,i+1

)

−
√

λ

8π
(1 − ln 2)

n
∑

i=1

ln

(

µ2

−si,i+1

)

+

√
λ

4π
F (1)

n (0) (3.18)

For n = 6 we have si,i+1 ≡ t
[2]
i , t

[3]
i = t

[3]
i+3 and t

[4]
i = t

[2]
i−2 (due to momentum conserva-

tion) and then the finite part is given by

F
(1)
6 (0) = −1

2

6
∑

i=1

[

ln
t
[2]
i

t
[3]
i

ln
t
[3]
i+1

t
[3]
i

+
1

2
Li2

(

1 − t
[2]
i t

[2]
i−3

t
[3]
i t

[3]
i−1

)

− 1

4
ln2 t

[3]
i

t
[3]
i+1

]

(3.19)

Since M
(1)
6 (ǫ) = I

(1)
6 (ǫ)+F

(1)
6 (ǫ) is the 1-loop amplitude, this formula has an interesting

representation. Indeed, the 1-loop amplitude can be written as a sum over box integrals.

A nice pictorial representation of this decomposition is to form ’clusters’ from external

momenta of the 1-loop diagrams and diagonals of the same [16]. The diagonals are then

replaced by a partial sum of external momenta and so can be interpreted as off-shell

momenta. The clusters with two opposite momenta off-shell and the other two on-shell

are called two-mass easy box functions and are usually denoted by F 2m e [23]. The clusters

with three or four null (on-shell) momenta correspond to one-mass and zero-mass boxes.

For a 6-point amplitude there are two kinds of 4-clusters: the degenerate one (F 2me
1;i )

formed from three on-shell external momenta and one off-shell momentum (one diagonal)
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and the other one (F 2me
2;i ) formed from two on-shell external momenta and two off-shell

momenta (two diagonals). Thus, we obtain [24, 25] (see also [26]):

M
(1)
6 =

Γ(1 + ǫ)Γ2(1 − ǫ)

(4π)2−ǫΓ(1 − 2ǫ)

6
∑

i=1

2
∑

r=1

(

1 − 1

2
δ2,r

)

F 2m e
r;i (p, q, P,Q) (3.20)

where p = pi−1, q = pi+r, P = pi + · · · + pi+r−1, and p + q + P + Q = 0.

An useful form (all-orders in ǫ) of the two-mass easy box function is given by [26]

F 2me(s, t, P 2, Q2) = − 1

ǫ2

[

(−s

µ2

)−ǫ
+

(−t

µ2

)−ǫ
(3.21)

−
(−P 2

µ2

)−ǫ
−

(−Q2

µ2

)−ǫ
+

( aµ2

1 − aP 2

)ǫ

2F1

(

ǫ, ǫ, 1 + ǫ,
1

1 − aP 2

)

+
( aµ2

1 − aQ2

)ǫ

2F1

(

ǫ, ǫ, 1 + ǫ,
1

1 − aQ2

)

−
( aµ2

1−as

)ǫ

2F1

(

ǫ, ǫ, 1+ǫ,
1

1−as

)

( aµ2

1−at

)ǫ

2F1

(

ǫ, ǫ, 1+ǫ,
1

1−at

)]

.

where

a =
P 2 + Q2 − s − t

P 2Q2 − st
(3.22)

and s := (P + p)2, t := (P + q)2.

The first line is the divergent part of the two-mass easy box function that matches the

divergent part of the on-shell up to a factor of 2 [13]. After taking the limit ǫ → 0, the

finite part contains only the following dilogarithms [27, 25]

Li2(1 − aP 2) + Li2(1 − aQ2) − Li2(1 − as) − Li2(1 − at) (3.23)

The degenerate cluster (one-mass function) does not contribute to the dilogarithmic

part of the BDS formula and since the 4- and 5-point amplitudes only contain this cluster,

these amplitudes do not contain dilogarithmic terms.

The duality between lightlike Wilson loops and gluon amplitudes holds also in the

weak coupling limit. Thus, to make connection with the Wilson loop computations at

strong coupling it would be interesting to understand the MHV amplitudes from a Wilson

loop computation at weak coupling. There are two one-loop corrections to the Wilson

loop. When the gluon stretches between two lightlike momenta meeting at a cusp there is

a contribution to the infrared divergent part of the amplitude. When the gluon stretches

between two non-adjacent segments there is a contribution to the finite part.

We will see in the next sections that the AdS-CFT dual amplitudes have extra re-

strictions, that should correspond to restrictions on the allowed Feynman diagrams in the

amplitude. Clearly, these conditions can modify the above cluster decomposition for Mn.
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Figure 1: Solution 1: y0 = 1/2(|y1y2| + y1y2 − |y1|y2 + y1|y2|).

3.2 Six-point amplitudes: AdS

The Alday-Maldacena solution for the Wilson loop ending on a square in y1, y2 is given

in (2.12), and is a solution of the action (2.9) with boundary conditions (2.11). We use the

symmetries of the action to construct new simple solutions. Thus, by cutting and gluing

these solutions and a careful consideration of the boundary conditions we construct 6-point

function solutions of the same action.

First, by noticing that we can change the sign of y0 in (2.9), we can construct the

solution

y0(y1, y2) = y1|y2|, r(y1, y2) =
√

(1 − y2
1)(1 − y2

2) (3.24)

(solution 2 in the following) and also a ‘composed’ solution (solution 1 in the following)

y0(y1, y2) =
1

2
(|y1y2| + y1y2 − |y1|y2 + y1|y2|),

r(y1, y2) =
√

(1 − y2
1)(1 − y2

2) (3.25)

The boundary conditions for these solutions are drawn in figure 1 and figure 2, from

where we see that they indeed are 6-point functions.

Another 6-point function solution is found by replacing y2 → −2 + |y2| in the Alday-

Maldacena solution (and shifting y0 for convenience), i.e.

y0 − 2 = (−2 + |y2|)y1; r2 = (1 − y2
1)(1 − (−2 + |y2|)2) (3.26)

which again takes advantage of the symmetries of the action and gluing. One can check

that the external (incoming and outgoing) momenta are the same for this solution as for the

y0 = y1|y2| solution, just with a different colour ordering. We argued that we can choose

any colour ordering to calculate M(s, t) and we will get the same function. Indeed, since

these 2 solutions have the same action (they were obtained by symmetries and cutting and
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Figure 2: Solution 2: y0 = y1|y2|.

gluing), they do give the same result. The external momenta will be in principle different

at nonzero b, but we will not analyze this solution further.

Note that the new solutions are not guaranteed to be valid on the lines where we glue

them. We will come back to this point at the end of this section, but for the moment we

will ignore it.

At this point the new solutions are just a trivial redefining of the old one, but we now

need to find the solution for varying external momenta. In the case of the 4-point function,

there were only 2 invariant variables, s and t, and consequently we could obtain them from

a boost parameter b in the auxiliary embedding coordinate of AdS and an overall scaling

by a. For the 6-point function, these two parameters are not enough, since we have more

external momenta. In fact there are 8 variables: 6 momenta, minus the center of mass

momentum, minus the one momentum given by momentum conservation give 4 momenta.

The mass shell conditions of the 4 momenta, spatial rotations, and the mass shell condition

of the sum of 5 momenta reduce it to 8 variables.

But what we can do is to make the same transformation as for the 4-point function,

depending on parameters a and b = vγ. We go to the AdS embedding coordinates

Y µ =
yµ

r
(µ = 0, . . . , 3),

Y−1 + Y4 =
1

r
, Y−1 − Y4 =

r2 + yµyµ

r
. (3.27)

and perform a Lorentz boost in the 04 plane,
(

Y ′0

Y ′4

)

=

(

γ vγ

vγ γ

)(

Y 0

Y 4

)

, (3.28)

with γ = 1/
√

1 − v2 and a rescaling by a, after which the solution becomes (using that

Y4 ∼ 1 − r2 − yµyµ = 0)

r′ =
ar(y1, y2)

1 + by0(y1, y2)
, y′0 =

a
√

1 + b2y0(y1, y2)

1 + by0(y1, y2)
, y′i =

a
√

1 + b2yi

1 + by0(y1, y2)
(3.29)
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Figure 3: Configuration after the Lorentz boost in the 04 plane for solution 1, y0 = 1/2(|y1y2| +
y1y2 − |y1|y2 + y1y2) with a = 1, b = 0.5.

Figure 4: Configuration after the Lorentz boost in the 04 plane for solution 2, y0 = y1|y2| with

a = 1, b = 0.5.

The boundaries of the boosted solutions (3.25) and (3.24) are depicted in figure 3 and

figure 4. In conformal gauge, these solutions are

r =
a

cosh u1 cosh u2 ± b sinhu1 sinhu2
, y0 =

±a
√

1 + b2 sinh u1 sinh u2

cosh u1 cosh u2 ± b sinhu1 sinhu2

y1 =
a sinh u1 cosh u2

cosh u1 cosh u2 ± b sinhu1 sinhu2
, y2 =

a cosh u1 sinhu2

cosh u1 cosh u2 ± b sinhu1 sinhu2
(3.30)

where −/+ corresponds to {u1 > 0, u2 < 0}/(others) for the solution y0(y1, y2) =

1/2(|y1y2| + y1y2 − |y1|y2 + y1|y2|), and to {u2 > 0}/{u2 < 0} for the solution y0(y1, y2) =

y1|y2|.
We can read off the external momenta corresponding to these solutions by going to

the boundary and defining ki = (∆y
(i)
1 ,∆y

(i)
2 ,∆y

(i)
0 ), where ∆y

(i)
µ ≡ y′µ(Pi+1) − y′µ(Pi).

Here Pi are the vertices of the boundary Wilson line, specifically P1, P2, P3, P4, P5 and
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P6 correspond to (y1, y2) = (−1, 1), (−1,−1), (0,−1), (1,−1), (1, 0) and (1, 1) in the

original coordinate before the boost, for the solution y0(y1, y2) = 1/2(|y1y2|+y1y2−|y1|y2+

y1|y2|), and to (y1, y2) = (−1, 1), (−1, 0), (−1,−1), (1,−1), (1, 0) and (1, 1) for the solution

y0(y1, y2) = y1|y2|. We then obtain the momenta

k1 =

(

2ab

1 − b2
,− 2a

1 − b2
,
2a

√
1 + b2

1 − b2

)

, k2 =

(

a

1 + b
,− ab

1 + b
,−a

√
1 + b2

1 + b

)

,

k3 =

(

a

1 + b
,

ab

1 + b
,
a
√

1 + b2

1 + b

)

, k4 =

(

ab

1 + b
,

a

1 + b
,−a

√
1 + b2

1 + b

)

,

k5 =

(

− ab

1 + b
,

a

1 + b
,
a
√

1 + b2

1 + b

)

, k6 =

(

− 2a

1 − b2
,

2ab

1 − b2
,−2a

√
1 + b2

1 − b2

)

(3.31)

for the solution y0(y1, y2) = 1/2(|y1y2| + y1y2 − |y1|y2 + y1|y2|), and

k1 =

(

ab

1 − b
,

a

b − 1
,
a
√

b2 + 1

1 − b

)

, k2 =

(

ab

b − 1
,

a

b − 1
,
a
√

b2 + 1

b − 1

)

k3 =

(

− 2a

b2 − 1
,− 2ab

b2 − 1
,−2a

√
b2 + 1

b2 − 1

)

, k4 =

(

ab

b + 1
,

a

b + 1
,−a

√
b2 + 1

b + 1

)

k5 =

(

− ab

b + 1
,

a

b + 1
,
a
√

b2 + 1

b + 1

)

k6 =

(

2a

b2 − 1
,− 2ab

b2 − 1
,
2a

√
b2 + 1

b2 − 1

)

(3.32)

for the solution y0(y1, y2) = y1|y2|.
We note that the sum of the incoming momenta (if b < 1), k1 + k3 + k5, is a/(1 −

b2)(1 + b2,−(1 + b2), 2(2− b)
√

1 + b2) for solution 1 and 2a/(1− b2)(1 + b2, 0, 2
√

1 + b2) for

solution 2, so both are not in the center of mass frame.

We now calculate the AdS amplitude as the exponential of the string action. Since

we still have (∂r∂r + ∂yµ∂yµ)/(2r2)|ǫ=0 = 1 for the new solutions, the dimensionally

regularized action on the solution is still (2.19). The dimensionally regularized solution is

again (2.17), i.e.

rǫ ∼
√

1 + ǫ/2rǫ=0; yµ
ǫ ≃ yµ

ǫ=0 (3.33)

The leading term in (2.19) is then

−iS =

√
λDcD

2π

∫ ∞

−∞

du1du2(cosh u1 cosh u2 + β sinh u1 sinh u2)
ǫ (3.34)

where β = ∓b for {u1 > 0, u2 < 0}/(others) for the solution y0(y1, y2) = 1/2(|y1y2| +

y1y2 − |y1|y2 + y1|y2|), and {u2 > 0}/{u2 < 0} for the solution y0(y1, y2) = y1|y2|. We have

calculated the subleading terms and they give constant finite contributions as in the [1]

case, therefore we will drop them (since we are not considering these constant terms).
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The details of the evaluation of the integral are given in the appendix. For the solution

y0(y1, y2) = 1/2(|y1y2| + y1y2 − |y1|y2 + y1|y2|) we obtain

I =

∫ ∞

−∞

du1du2(cosh u1 cosh u2 + β sinhu1 sinhu2)
ǫ

=
πΓ[− ǫ

2 ]2

Γ[1−ǫ
2 ]2

2F1

(

1

2
,− ǫ

2
,
1 − ǫ

2
; b2

)

+
2b

ǫ
3F2

(

1, 1,
1 − ǫ

2
;
3

2
, 1 − ǫ

2
; b2

)

(3.35)

where the first term in the last line corresponds to the 4-point function result, and the

second is a new contribution. For the solution y0(y1, y2) = y1|y2|), we obtain only the

first term, thus the same result as for the 4-point function. Using the expansion of the

hypergeometric functions,

2F1

(

1

2
,− ǫ

2
,
1 − ǫ

2
; b2

)

= 1 +
1

2
ln(1 − b2)ǫ +

1

2
ln(1 − b) ln(1 + b)ǫ2 + O(ǫ3)

3F2

(

1, 1,
1 − ǫ

2
;
3

2
, 1 − ǫ

2
; b2

)

=
1

2b
ln

(

1 + b

1 − b

)

+
1

2b

{

− ln 2 ln

(

1 + b

1 − b

)

− Li2

(

1 − b

2

)

+Li2

(

1 + b

2

)}

ǫ (3.36)

we obtain the AdS result

−
√

λ

2π

(

2π2 µ2

4a2

)ǫ/2 [

4

ǫ2
+

2

ǫ
ln(1 − b2) +

2

ǫ
(1 − ln 2) (3.37)

+(1 − ln 2) ln(1 − b2) + 2 ln(1 − b) ln(1 + b)

+
1

ǫ
ln

1 + b

1 − b
+

1 + ln 2

2
ln

1 + b

1 − b
− Li2

(

1 − b

2

)

+ Li2

(

1 + b

2

)]

for the y0(y1, y2) = 1/2(|y1y2|+y1y2−|y1|y2 +y1|y2|) solution, where the first two lines are

the 4-point function result and the last line is the extra term. For the y0(y1, y2) = y1|y2|)
solution, we have only the first two lines, i.e. the 4-point function result. Note that the

normalization of µ2 by 2π2 is the same as in [1] (part of it is a (2π)2 in t
[2]
i ’s in (2.7)

and (2.15), and also a factor of 2). The contributions to the action from the higher order ǫ

terms in (2.19) is evaluated in a similar way. For the solution 1, +1 is added in the square

bracket in (3.37) which is same as the 4-point case. For the solution 2, 1 + b is added.

We will now apply our 6-point function field theory formulas for the momenta in (3.31)

and (3.32) and compare with the AdS results. For these momenta, the relevant t
[r]
i variables

are given by

t
[2]
1 =

4a2

1 − b
, t

[2]
2 =

4a2

(b + 1)2
, t

[2]
3 = 2a2, t

[2]
4 =

4a2

(b + 1)2
, t

[2]
5 =

4a2

1 − b
, t

[2]
6 =

8a2

(b + 1)2

t
[3]
1 =

4a2

1 − b2
, t

[3]
2 =

4a2

b + 1
, t

[3]
3 =

4a2

b + 1
, t

[3]
4 =

4a2

1 − b2
, t

[3]
5 =

4a2

b + 1
, t

[3]
6 =

4a2

b + 1
(3.38)
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for solution 1 (y0(y1, y2) = 1/2(|y1y2| + y1y2 − |y1|y2 + y1|y2|)) and

t
[2]
1 =

4a2

(1 − b)2
, t

[2]
2 =

4a2

b + 1
, t

[2]
3 =

4a2

1 − b
, t

[2]
4 =

4a2

(b + 1)2
, t

[2]
5 =

4a2

1 − b
, t

[2]
6 =

4a2

b + 1
,

t
[3]
1 =

4a2

1 − b2
, t

[3]
2 = 4a2, t

[3]
3 =

4a2

1 − b2
, t

[3]
4 =

4a2

1 − b2
, t

[3]
5 = 4a2, t

[3]
6 =

4a2

1 − b2

(3.39)

for solution 2 (y0(y1, y2) = y1|y2|). Note that for both solutions, if b < 1, all the t
[2,3]
i ’s are

positive.

We then obtain

F
(1)
6 (0) = ln 2 ln(1 − b) − 2 ln 2 ln(1 + b)

−2 ln(1 − b) ln(1 + b) +
1

2
(ln(1 − b))2 + 3(ln(1 + b))2, (3.40)

for solution 1 and

F
(1)
6 (0) =

3

2

{

(ln(1 − b))2 + (ln(1 + b))2
}

− 2 ln(1 − b) ln(1 + b), (3.41)

for solution 2.

The divergent piece of the amplitude becomes

−
√

λ

2π

6

ǫ2

( µ

2a

)ǫ ((

1 +
ǫ

2
(1 − ln 2)

) (

1 +
ǫ

6
ln(1 − b)(1 + b)3

)

(3.42)

+
ǫ2

4

(

ln2(1 + b) +
1

6
ln2(1 − b)

)

+
ǫ2

12
ln 2

(

ln 2

2
− ln(1 + b)

))

for solution 1 and

−
√

λ

2π

6

ǫ2

( µ

2a

)ǫ ((

1 +
ǫ

2
(1 − ln 2)

) (

1 +
ǫ

3
ln(1 − b2)

)

+
ǫ2

8
(ln2(1 + b) + ln2(1 − b))

)

(3.43)

for solution 2. The finite remainder part can be rewritten as

−
√

λ

2π

6

ǫ2

( µ

2a

)ǫ
(

− ǫ2

12
F

(1)
6 (0)

)

(3.44)

Then, reintroducing the general dependence of λ at finite coupling, we can write the

total result for these 6-point amplitudes as

M6 =
A6

A6,tree
= d(λ) exp

(

− 3

4ǫ2
f−2

(

λ
( µ

2a

)2ǫ
))

exp

(

−3

2
g−1

(

λ
( µ

2a

)2ǫ
))

(3.45)

×
(

1

b + 1

)
3
2
g(λ)+ 3

4
f−1(λ)

ǫ
+ 3

2
f(λ) ln µ

2a
+

f(λ)
4

ln 2 (

1

1 − b

)

g(λ)
2

+
f−1(λ)

4ǫ
+

f(λ)
4

ln µ2

4a2
(1+b)2

2
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for solution 1 and

M6 =
A6

A6,tree
= d(λ) exp

(

− 3

4ǫ2
f−2

(

λ
( µ

2a

)2ǫ
))

exp

(

−3

2
g−1

(

λ
( µ

2a

)2ǫ
))

×
(

1

b + 1

)g(λ)+
f−1(λ)

2ǫ
+f(λ) ln µ

2a
(

1

1 − b

)g(λ)+
f−1(λ)

2ǫ
+

f(λ)
2

ln µ2

4a2 (1+b)

(3.46)

for solution 2. Here d(λ) contains finite constant factors. The first line is equal in the two

expressions, and is a IR divergent piece depending on the overall scale of the momentum.

The second line can be rewritten as

(

t
[2]
2

2t
[2]
3

)
3
4
g(λ)+ 3

8
f−1(λ)

ǫ
+ 3

4
f(λ) ln µ

2a
+

f(λ)
8

ln 2 (

t
[2]
1

2t
[2]
3

)

g(λ)
2

+
f−1(λ)

4ǫ
+

f(λ)
4

ln µ2

2t
[2]
2

(3.47)

for solution 1 and

(

t
[2]
2

t
[3]
2

)g(λ)+
f−1(λ)

2ǫ
+f(λ) ln µ

2a
(

t
[2]
3

t
[3]
2

)g(λ)+
f−1(λ)

2ǫ
+

f(λ)
2

ln µ2

t
[2]
2

(3.48)

for solution 2. This rewriting is similar to the one performed for the 4-point function in [15],

and as there, it relies on the nontrivial cancellation of the leading ln2 terms between the

divergent part and the finite remainder (in this case, ln2(1 − b) and ln2(1 + b) terms),

without which one could not rewrite the amplitude as this power law.

We can then take the limit b → 1 (a is fixed), which takes several of the t
[r]
i parameters

to infinity, similar to the s fixed, t → −∞, u → +∞ limit taken by [15], and since the tree

amplitude A6,tree also behaves like a power law, we also get a Regge-like behaviour of the

6-point amplitude A6, ∼ (t
[2]
i )α(t

[2]
2 ), where t

[2]
i is a parameter that goes to infinity and t

[2]
2

stays finite. The physical significance of this result is not clear, but since this power law

behaviour doesn’t seem to hold for an arbitrary high energy limit (some of the t parameters

becoming infinite, others staying finite, and for arbitrary values), it seems to suggest that

the cases treated here have a Regge-like explanation as for the 4-point function, in terms

of an exchanged particle.

We also observe that if b < 1, since all the t
[2,3]
i ’s are positive, the amplitude is real,

whereas if b > 1 the amplitude becomes complex.

So we have a mismatch between the AdS and field theory results. But all the solutions

that we wrote were obtained by cutting and gluing, so there is a potential problem on the

line on which we glue. We will try to understand the y0 = y1|y2| solution, since it is easiest,

and the mismatch is smallest.

There could be potential delta functions, δ(y2), in the equation of motion in static

gauge, coming from ∂2
2y0. Other than these potential terms, the equations of motion are

the same for our solution as for the 4-point function solution, thus are satisfied (since the

solutions were obtained by using symmetries of the action).

Since the terms are of the type δ(y2), anything multiplied by y2 gives zero, thus we can

put y2 = 0 after taking derivatives. We only look for ∂2
2y0 terms, the only ones that give
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the delta functions. We also substitute ∂1y0 = 0, ∂2r = 0 after taking derivatives, since

both are proportional to y2.

Then potential delta function terms in the r equation of motion coming from (2.9) are

contained in

∂2

[

∂2r + ∂1y0(∂1r∂2y0 − ∂2r∂1y0)

r2
√

1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

]

(3.49)

but as we can easily see, after taking derivatives, keeping only ∂2
2y0 terms and substituting

y2 = 0 as above, we actually get zero. So there are no delta function terms in the r equation

of motion.

The y0 equation of motion is

− 1

r2
∂2

[

−2∂2y0 − 2∂1r(∂1r∂2y0 − ∂2r∂1y0)

2r2
√

1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

]

− 1

r2
∂1

[

−2∂1y0 + 2∂2r(∂1r∂2y0 − ∂2r∂1y0)

2r2
√

1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

]

= 0 (3.50)

and again keeping only ∂2
2y0 terms and putting y2 = 0 after taking the derivatives we get,

after a bit of algebra, the source (boundary) term

1

r2
∂2

[

∂2y0 + (∂1r)
2∂2y0

√

1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

]

=
y1δ(y2)

(1 − y2
1)

3
(3.51)

So one needs to add a source term in the y0 equation of motion (but not in the r

equation of motion) that cancels this term. In other words, we have an extra boundary

condition at y2 = 0, a boundary condition in y0, but not in r. The boundary condition is

that y0(y2 = 0) = 0 (but r is arbitrary).

4. Mismatch interpretation

It is easy to see what would be the interpretation of the boundary condition identified in

the previous section. The external boundary of the Wilson loop (for which r=0) is mapped

by T duality to physical (on-shell) external momenta of the amplitude. T duality will map

the line y0 = y2 = 0, ∆y1 = 2 to a momentum kµ: (E = 0, p2 = 0, p1 = 2), which is

therefore virtual, being spacelike. Moreover, the line y2 = 0 has varying r, which is equal

to zero only at the ends. Therefore this momentum is not external (external momenta are

defined on the r=0 boundary).

Thus we propose the interpretation that the AdS amplitude we calculated actually

corresponds to the following field theory amplitude. Amplitude for three external lines to

go into the virtual line kµ: (E = 0, p2 = 0, p1 = 2), followed by amplitude for this virtual

line to go into other three external lines, as in figure 5a.

It could however also be that there simply is a mismatch between the BDS formula

and the dual prescription. Indeed, recently [20] found a mismatch for the Mn amplitude

at large n. They also suggested that since 4- and 5-point amplitudes are determined by
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Figure 5: a) Conjectured amplitude calculated by solution 2. b) Conjectured amplitude calculated

by solution 1. c) Conjectured amplitude calculated by 8-point function solution.

conformal symmetry [19, 20], there could in principle be dissagreements starting at the

6-point amplitude.

One could ask whether the mismatch between the first line in (3.37) and (3.43)

plus (3.44) can be fixed. At first sight this seems encouraging. Indeed, [17] showed that

the divergent terms in the BDS formula can be obtained from the contribution near the

cusps (corners) of the Wilson loop.

The four corners of the Alday-Maldacena solution have thus the correct behaviour,

and they are the same for us, so they are guaranteed to match. But the two extra cusps on

the y0 = y2 = 0 line are potentially problematic. So we could ask whether it is enough to

subtract the contribution at our (unsatisfactory) cusps and add the correct cusp behaviour.
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The correct cusp behaviour is, according to [17]

∑

i=1,4

(

−
√

λ

2π

)

1

ǫ2
C(ǫ)

(

µ2

si,i+1

)ǫ/2

(4.1)

=

(

−
√

λ

2π

)

( µ

2a

)ǫ
[

2

ǫ2
+

1 − ln 2

ǫ
+

1

2
ln2(1 − b) +

1

2
ln2(1 + b)

+
1

ǫ
(ln(1 + b) + ln(1 − b)) +

1 − ln 2

2
(ln(1 + b) + ln(1 − b))

]

and we see that at least the b-independent, epsilon-divergent terms are the ones needed for

the mismatch.

The contribution of the fake cusps is evaluated in the appendix. It is found to be of

order 1/ǫ as needed (since we are missing the 1/ǫ2 term), but the b dependence is not the

one we wanted. That means that unfortunately, the missing contribution is not localized

at the two fake cusps only.

We then go back to the interpretation of the AdS amplitude as field theory amplitude

with an intermediate virtual line and try to understand it better.

If the amplitude we are calculating involves one intermediate virtual line, that means

that in order to complete the full 6-point amplitude we are missing amplitudes where the in-

termediate virtual line is replaced by 2, 3, . . . (any number > 1) of intermediate virtual lines.

The separation of the total 6-point amplitude in amplitudes with any number of inter-

mediate lines is familiar from the optical theorem. The optical theorem is a diagramatic

equality based on the operatorial relation −i(T −T †) = T †T , where T = (S − 1)/i is the T

matrix. The optical theorem states that (twice) the imaginary part of the 6-point ampli-

tude is equal to the sum of the cut amplitudes with 1,2,3,. . . (any number of) intermediate

lines, where cut means putting the lines on-shell, i.e. replacing (for a scalar propagator)

1

p2 − m2 + iǫ
→ −2πiδ(p2 − m2) (4.2)

In order to have such a contribution, we need to have at least an integration over a (loop)

momentum for the intermediate lines, which means that the 1 particle cut never contributes.

So the imaginary part of the 6-point amplitude is given by the sum over 2,3,. . . particle

cuts. But the BDS formula states that the 6-point amplitude is real if we have all t
[2,3]
i ’s

positive, as is the case for us if b < 1, therefore the sum of the 2,3,. . . particle cuts in our

case if b < 1 must be zero.

But the contribution we are missing is one where in the same diagrams we don’t cut

the propagators, but we compute the whole integral, thus can be potentially nonzero.

Let us also note that we can interpret in a similar manner the 6-point amplitude

corresponding to the y0(y1, y2) = 1/2(|y1y2| + y1y2 − |y1|y2 + y1|y2|) solution. In a similar

way, we see that it has two extra boundaries at y1 = 0 = y0, y2 < 0 and y2 = 0 =

y0, y1 > 0, corresponding to 2 spacelike (virtual) momenta ka = (0, 0,−1) and kb = (0, 1, 0).

Therefore this time the conjectured corresponding field theory amplitude is the amplitude

for 4 external lines to go into the two virtual momenta ka and kb, followed by the amplitude

for the two virtual momenta to go into other two external lines, as in figure 5b).
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Figure 6: Configuration for 8-point amplitude solution, y0 = |y1y2|

Therefore we conjecture that any extra boundary condition for the Wilson loop, defined

on a line, that fixes the yµ’s (µ = 0, 1, 2, 3), but not r, corresponds to an intermediate virtual

momentum line with kµ = ∆yµ/(2π). A priori one can have a Wilson loop with many such

boundary conditions, and therefore get an amplitude with many intermediate virtual lines,

but then the AdS calculation is probably less useful (it is less useful to know only a very

particular set of Feynman diagrams). That is why we have focused on the solution with a

single intermediate momentum line.

5. Eight point function

We can generate also an 8-point amplitude from the Alday-Maldacena solution in a manner

similar to the 6-point functions. The solution is

y0(y1, y2) = |y1y2|; r(y1, y2) =
√

(1 − y2
1)(1 − y2

2) (5.1)

which is depicted in figure 6. We can again Lorentz boost the solution in the Y4 embedding

coordinate of AdS and obtain the solution drawn in figure 7. It is the same solution as

in (3.30), except now the ± is = sgn(y1y2). From it we can derive the external momenta

k1 =

(

− ab

b + 1
,− a

b + 1
,−a

√
b2 + 1

b + 1

)

, k2 =

(

ab

b + 1
,− a

b + 1
,
a
√

b2 + 1

b + 1

)

,

k3 =

(

a

b + 1
,− ab

b + 1
,−a

√
b2 + 1

b + 1

)

, k4 =

(

a

b + 1
,

ab

b + 1
,
a
√

b2 + 1

b + 1

)

,

k5 =

(

ab

b + 1
,

a

b + 1
,−a

√
b2 + 1

b + 1

)

, k6 =

(

− ab

b + 1
,

a

b + 1
,
a
√

b2 + 1

b + 1

)

,

k7 =

(

− a

b + 1
,

ab

b + 1
,−a

√
b2 + 1

b + 1

)

, k8 =

(

− a

b + 1
,− ab

b + 1
,
a
√

b2 + 1

b + 1

)

. (5.2)
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Figure 7: Configuration after the Lorentz boost in the 04 plane for the solution y0 = |y1y2|, with

a = 1, b = 0.5.

The momentum invariants are then

t
[2]
odd =

4a2

(b + 1)2
, t[2]even = 2a2, t

[3]
i =

4a2

b + 1
, t

[4]
odd =

8a2

(b + 1)2
, t[4]even = 4a2 (5.3)

With these values, the finite remainder function is

F
(1)
8 (0) = 4 ln2(b + 1) − 4 ln 2 ln(b + 1) − π2

6
(5.4)

where we have used the relation

Li2(1/2) =
π2

12
− 1

2
(ln 2)2. (5.5)

The divergent part of the amplitude, from (3.18) is found to be

lnMn,div = −4
√

λ

πǫ2

( µ

2a

)ǫ
(

(

1 +
ǫ

2
(1 − ln 2)

)

(

1 +
ǫ

2
ln(b + 1) +

ǫ ln 2

4

)

+
ǫ2

16
(4 ln2(b + 1) + ln2 2)

)

(5.6)

On the other hand, the AdS result is found to be obtained by multiplying the second

term in (3.35) by a factor of 2, thus the final result in (3.37), with the last line multiplied

by a factor of 2, i.e.

−
√

λ

2π

(

2π2 µ2

4a2

)ǫ/2 [

4

ǫ2
+

2

ǫ
ln(1 − b2) +

2

ǫ
(1 − ln 2) (5.7)

+(1 − ln 2) ln(1 − b2) + 2 ln(1 − b) ln(1 + b)

+
2

ǫ
ln

1 + b

1 − b
+ 2

1 + ln 2

2
ln

1 + b

1 − b
− 2Li2

(

1 − b

2

)

+ 2Li2

(

1 + b

2

)]
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As evaluated in the appendix, the contribution of the subleading terms give also twice the

subleading terms of solution 1 for the 6-point function, thus we have an extra −2b in the

square brackets.

The mismatch now is most dramatic, but again the explanation is that we have now

4 extra boundaries on which y0 = 0, namely y1 = 0, y2 > 0; y1 = 0, y2 < 0; y2 = 0, y1 > 0;

y2 = 0, y1 < 0. They will correspond to 4 internal spacelike (virtual) momenta, thus giving

the amplitude in figure 5c).

6. Collinear limits

The Alday-Maldacena solution can also be reinterpreted as the collinear limit of a higher

n-point amplitude. That is, if we interpret the 4 sides of the Wilson loop not as a single

external momentum, but as sets of momenta:

k1 →
∑

i

k
(1)
i ; k2 →

∑

i

k
(2)
i ; k3 →

∑

i

k
(3)
i ; k4 →

∑

i

k
(4)
i (6.1)

and replace in s = (k1 + k2)
2 and t = (k2 + k3)

2. The result for such an n-point amplitude

is the Alday-Maldacena result as a function of s and t, now defined as a function of the

n momenta k
(a)
i , a = 1, 2, 3, 4. This is a prediction of the AdS calculation, and we should

check that it is indeed obtained from the BDS conjecture. We will see however that there

are subtleties related to how we take the limit.

We will now check that the BDS formula for the n-point functions reproduces the

4-point result in the above collinear limit.

Specifically, let us consider the case of 5-point amplitude and take k4 = zkP and

k5 = (1 − z)kP , so that kP = k4 + k5 and take the limit k2
P → 0. This is a usual collinear

limit. However, we already see that this is not quite how the limit is taken in string theory.

In the AdS computation, we have amplitudes that are already on-shell (k2
4 = k2

5 = 0), and

it is only 2k4 · k5 = (k4 + k5)
2 that goes to zero.

For the 5-point function we have

g5,i = L5,i = −1

2
ln

(

t
[2]
i

t
[2]
i+3

)

ln

(

t
[2]
i+1

t
[2]
i+2

)

(6.2)

and ignoring subleading terms in k2
P , we have the variables

t
[2]
1 = s1,2; t

[2]
2 = s2,3; t

[2]
3 = s3,4 = zs3,P ; t

[2]
4 = s4,5 = k2

P ; t
[2]
5 = s5,1 = (1 − z)sP,1

(6.3)

The momenta (k1, k2, k3, kP ) characterize the 4-point amplitude, with variables

s1,2 = s3,P = −s; s1,P = s2,3 = −t (6.4)

Then the finite remainder of the 5-point amplitude is

f(λ)

4
F

(1)
5 (0) =

f(λ)

8

5
∑

i=1

L5,i (6.5)

=
f(λ)

8

[

ln2 s

t
+ln

−s

µ2
ln z+ln

−t

µ2
ln(1 − z)−ln

k2
P

µ2
ln z(1 − z)+ln z ln(1 − z)

]
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where we have introduced an arbitrary scale µ that we want to identify with the IR scale,

in order to isolate the finite remainder of the 4-point function, the first term in the last

equality.

The divergent piece of the (log of the) 5-point amplitude is

−5f−2(λ)

8ǫ2
− 5g−1(λ)

4ǫ
−

(

f−1(λ)

8ǫ
+

g(λ)

4

) [

2 ln
µ2

s
+ 2 ln

µ2

t
− ln

k2
P z(1 − z)

µ2

]

−f(λ)

16

[

2 ln2 µ2

s
+ 2 ln2 µ2

t
+ ln2

(

k2
P z(1 − z)

µ2

)

− 2 ln z ln(1 − z)

+2 ln
s

µ2
ln z + 2 ln

t

µ2
ln(1 − z) − 2 ln

k2
P

µ2
ln z(1 − z)

]

(6.6)

Adding up the 2 contributions the last line in the divergent piece cancels against the finite

remainder and we get the 4-point amplitude with some extra terms

lnM5 → lnM4 −
f−2(λ)

8ǫ2
− g−1(λ)

4ǫ
+

f(λ)

4
ln z ln(1 − z)

−f(λ)

16
ln2 k4 · k5

µ2
+

(

f−1(λ)

8ǫ
+

g(λ)

4

)

ln
k4 · k5

µ2
(6.7)

This computation agrees with the one loop result in [24] since at one loop g(λ) = 0

and the extra terms are then

f(λ)

8
2 ln z ln(1 − z) − 1

8ǫ2
f−2

(

λ

(

µ2

k4 · k5

)ǫ)

(6.8)

However the extra terms are unfortunate from the point of view of the AdS calculation.

The second line in (6.7) dissappears if we take k4 · k5 = µ2, which is consistent, since both

quantities go to zero. The 2 ln z ln(1−z) can be rewritten as 1/2 ln k2
4/k

2
P ln k2

5/k
2
P and thus

is seen to be due to the fact that k2
4 and k2

5 were not zero from the begining, as was the case

in the AdS computation. We are still left with the constant terms −f−2(λ)/8ǫ2−g−1(λ)/4ǫ

which arise from the corner of the AdS Wilson loop and thus should dissappear if the

collinear limit of the AdS calculation is done correctly (and before taking ǫ to zero).

Next, we consider the 6-point amplitude and take the double collinear limit, k1 = wkQ,

k2 = (1 − w)kQ, and k5 = zkP and k6 = (1 − z)kP . As before, k2
P and k2

Q are not zero,

but rather go to zero in the collinear limit. In this limit we obtain (dropping subleading

k2
Q and k2

P terms

t
[2]
1 = s1,2 = k2

Q; t
[2]
2 = s2,3 = (1−w)sQ,3; t

[2]
3 = s3,4

t
[2]
4 = s4,5 = zs4,P ; t

[2]
5 = s5,6 = k2

P ; t
[2]
6 = s6,1 = (1−z)sP,1 = (1−z)wsP,Q

t
[3]
1 = s4,P ; t

[3]
2 = sP,1 = wsP,Q; t

[3]
3 = (1−z)sP,Q = (1−z)s3,4; t

[3]
i = t

[3]
i+3

(6.9)

The momenta (kP , kQ, k3, k4) characterize the 4-point amplitude, with variables

sP,Q = s3,4 = s; sQ,3 = sP,4 = t (6.10)
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in the limit that kP and kQ are on-shell. Then the finite remainder term is

f(λ)

4
F

(1)
6 (0) =

f(λ)

8

6
∑

i=1

g6,i (6.11)

=
f(λ)

8

[

ln2 s

t
+ln

s

µ2
ln w(1−z)+ln

t

µ2
ln z(1−w)−ln

k2
P

µ2
ln z(1−z)

− ln
k2

Q

µ2
ln w(1−w)+ln z ln(1−z)+ln w ln(1−w) + lnw ln(1−z)

]

and the divergent part of the (log of the) 6-point amplitude is

−3f−2(λ)

4ǫ2
− 3g−1(λ)

2ǫ2
−

(

f−1(λ)

8ǫ
+

g(λ)

4

)

(

2 ln
µ2

s
+2 ln

µ2

t
−ln

k2
Q

µ2
w(1−w)

k2
P

µ2
z(1−z)

)

−f(λ)

16

[

2 ln2 µ2

s
+ 2 ln2 µ2

t
+ ln2 k2

P

µ2
z(1 − z)

+ ln2
k2

Q

µ2
w(1 − w) − 2 ln z ln(1 − z) − 2 ln w ln(1 − w)

+2 ln w ln(1 − z) + 2 ln
t

µ2
ln z(1 − w) + 2 ln

s

µ2
ln w(1 − z)

−2 ln
k2

P

µ2
ln z(1 − z) − 2 ln

k2
Q

µ2
ln w(1 − w)

]

(6.12)

Adding the two contributions the last two lines of the divergent part cancel against terms

in the finite remainder and we get

lnM6 → lnM4

+
f(λ)

8
2 ln w ln(1 − w) − 1

8ǫ2
f−2

(

λ

(

µ2

k1 · k2

)ǫ)

− 1

4ǫ
g−1

(

λ

(

µ2

k1 · k2

)ǫ)

+
f(λ)

8
2 ln z ln(1 − z) − 1

8ǫ2
f−2

(

λ

(

µ2

k5 · k6

)ǫ)

− 1

4ǫ
g−1

(

λ

(

µ2

k5 · k6

)ǫ)

(6.13)

i.e., the sum of the contributions of the two collinearities, as expected.

7. Conclusions

In this paper we have analyzed 6-point amplitudes for gluon scattering at strong coupling

and large N in N = 4 SYM, using AdS-CFT, following the prescription of [1]. We have

used the BDS conjecture together with the strong coupling value of the functions f(λ) and

g(λ) calculated in [1] to predict what the AdS results should give. For the AdS calculation,

we have analyzed solutions obtained by symmetries, cutting and gluing. We have obtained

a mismatch, due to the fact that the AdS solutions contain extra boundary conditions.

The boundary conditions are that y0 = 0 on an internal line where r is not fixed, and

we have interpreted them as having a fixed intermediate virtual momentum line in the

amplitude. Thus we propose that the AdS computation calculates only a certain part of

– 25 –



J
H
E
P
1
2
(
2
0
0
7
)
0
7
7

the 6-point amplitudes. It would be interesting if one could calculate the gauge theory

value for the corresponding amplitude, in order to really test our proposal.

It could also be that there is an actual dissagreement between the BDS conjecture

and the dual computation. In [20] it was suggested that a dissagreement could start at

n-point amplitudes with n ≥ 6. The 4- and 5-point amplitudes are fixed by conformal

invariance [19, 20], but a dissagreement was found at n → ∞.

The 6-point functions analyzed here do not cover the general external momenta (we

have only 2 variables, instead of 8), and in particular we found that for these momenta we

obtain a kind of Regge behaviour, where if we take some of the ti’s to infinity by taking

b → 1 (which keeps the rest of the tj ’s fixed) we have A ∼ (ti)
α(tj ). It would be interesting

to understand the physical significance of this result.

We have also treated an 8-point function for completeness, which can be obtained

similarly. In this case however, the mismatch is more dramatic, which we understood from

our conjectured picture for the extra boundary conditions: the gauge theory amplitude

contains only a small part of the possible Feynman diagrams.

The calculation of [1] can be reinterpreted as being a higher n-point amplitude, where

the momenta are collinear, such that they form four groups. This implies that there should

be a way to take the collinear limit that should avoid extra terms. We have calculated the

natural collinear limit of the 5- and 6-point BDS amplitudes, and we have found that we

can get rid of most, but not all the extra terms. The issue needs therefore to be understood

further, but this can only be done if we have a solution with correct extra cusps (for our

solutions, as we saw, the extra cusps did not have the right BDS behaviour).
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A. Integrals

In this appendix we show how to compute integrals necessary for the AdS 6-point am-

plitudes. The calculation proceeds along the same line as the calculation of the similar

integral in the appendix of [1]. First we consider the integral relevant for the leading term

(formally of order 1) in (2.19)

I =

∫ ∞

−∞

du1du2(cosh u1 cosh u2 + β sinhu1 sinhu2)
ǫ (A.1)
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and expanding in β we get

∞
∑

l=0

∫ +∞

−∞

du1

∫ +∞

−∞

du2β
l Γ(ǫ + 1)

Γ(ǫ + 1 − l)l!
(cosh u1 cosh u2)

ǫ(tanh u1 tanh u2)
l (A.2)

We split the u1, u2 integrals into (−∞, 0) and (0,+∞) and use that β = ±b is constant on

those intervals. Then using

∫ +∞

0
du(cosh u)ǫ(tanh u)l =

Γ
(

l+1
2

)

Γ
(

− ǫ
2

)

2Γ
(

1+l−ǫ
2

) (A.3)

we get for solution 1 (± = − if u1 > 0, u2 < 0 and ± = + otherwise)

I =
∑

l=0

(

2
(

1 + (−1)l
)

+
(

1 − (−1)l
)) Γ(ǫ + 1)

Γ(ǫ + 1 − l)l!
bl

(

Γ
(

l+1
2

)

Γ
(

− ǫ
2

)

2Γ
(

1+l−ǫ
2

)

)2

(A.4)

and doing the sums we get

πΓ
[

− ǫ
2

]2

Γ
[

1−ǫ
2

]2 2F1

(

1

2
,− ǫ

2
,
1 − ǫ

2
; b2

)

+
2b

ǫ
3F2

(

1, 1,
1 − ǫ

2
;
3

2
, 1 − ǫ

2
; b2

)

(A.5)

For this last step write the definitions of the hypergeometric functions as sums and then

prove that the terms in the two expressions are the same.

For solution 2, ± = + if u2 > 0 and ± = − if u2 < 0, we get only the first term

in (A.4), i.e. 2(1 + (−1)l), and not the (1 − (−1)l) term, and consequently the 3F2 term

dissappears in the final result.

For the 8-point function solution, ± = + if u1u2 > 0 and ± = − if u1u2 < 0, and we

get twice the (1 − (−1)l) term, consequently twice the 3F2 term in the final result.

A more general integral, needed for the calculation of the subleading terms is

I =

∫ ∞

0
du1du2(cosh u1 cosh u2 + b sinhu1 sinhu2)

a ×

× coshm u1 coshn u2 tanhp u1 tanhq u2 = Ieven + Iodd (A.6)

Then

Ieven =
1

4
B

(

p + 1

2
,−a + m

2

)

B

(

q + 1

2
,−a + n

2

)

(A.7)

×4F3

({

p + 1

2
,
q + 1

2
,
1 − a

2

}

;

{

1

2
,
p + 1

2
− a + m

2
,
q + 1

2
− a + n

2

}

; b2

)

Iodd =
ab

4

Γ(−a+m
2 )Γ(−a+n

2 )

Γ(2+p−a−m
2 )Γ(2+q−a−n

2 )

×4F3

({

p + 2

2
,
q + 2

2
, 1 − a

2
,
1 − a

2

}

;

{

3

2
,
p + 2 − a − m

2
,
q + 2 − a − n

2

}

; b2

)
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where a + n, a + m < 0, p + 1, q + 1 > 0. For m = n = p = q = 0 we get the previous

integral, and for m = 2, n = p = q = 0 we get

I =
1

4Γ
(

1−a
2

)

{

πΓ
(

−1 − a
2

)

Γ
(

−a
2

)

Γ
(

−1+a
2

) 2F1

(

1

2
,−a

2
,−1 + a

2
; b2

)

+
22+a(1 + a)bπΓ(−2 − a)

Γ
(

3
2

)

Γ
(

−a
2

) 3F2

(

1, 1,
1 − a

2
;
3

2
,−a

2
; b2

)

}

(A.8)

B. Subleading terms in the action

We write the terms in (2.19) as

−iS = Bǫ

∫ +∞

−∞

du1du2
1

(r/a)ǫ
(1 + ǫI1 + ǫ2I2 + · · · ) = Bǫ

∫ +∞

−∞

du1du2Fb(u1, u2) (B.1)

thus the integrand splits as

Fb(u1, u2) = F
(0)
b + ǫF

(1)
b (u1, u2) + ǫ2F

(2)
b (u1, u2) + · · · (B.2)

For the solution 2, we can reduce the integration to integration from 0 to infinity by

using the symmetries. We get

−iS = Bǫ

∫ ∞

0

∫ ∞

0
du1du2 {Fb(u1, u2) + Fb(−u1, u2) + F−b(u1,−u2) + F−b(−u1,−u2)}

(B.3)

but because Fb(−u1, u2) = Fb(u1,−u2) = F−b(u1, u2) we get

−iS = Bǫ

∫ ∞

0

∫ ∞

0
du1du2 2 {Fb(u1, u2) + F−b(u1, u2)} (B.4)

which is the same result as for the 4-point function. Thus, as is the case there, the

subleading terms just give a +1 added inside the square brackets in (3.37).

For the solution 1, we have

−iS = Bǫ

∫ ∞

0

∫ ∞

0
du1du2 {Fb(u1, u2) + Fb(−u1, u2) + F−b(u1,−u2) + Fb(−u1,−u2)}

(B.5)

and using the symmetries, we get

−iS = Bǫ

∫ ∞

0

∫ ∞

0
du1du2 {2Fb(u1, u2) + 2F−b(u1, u2) + (Fb(u1, u2) − F−b(u1, u2))}

= −iS4−point + Bǫ

∫ ∞

0

∫ ∞

0
du1du2(Fb(u1, u2) − F−b(u1, u2)) (B.6)

Then the order ǫ term (from F
(1)
b (u1, u2)) in the difference gives

−i∆S(1) = (b2 − 1)
2ǫ(ǫ − 1)bπΓ(−ǫ)

4Γ
(

3−ǫ
2

)

Γ
(

3
2

)

Γ
(

− ǫ−2
2

)3F2

(

1, 1,
3 − ǫ

2
;
3

2
− ǫ − 2

2
; b2

)

−b2 b

ǫ − 2
3F2

(

1, 1,
3 − ǫ

2
;
3

2
, 2 − ǫ

2
; b2

)

(B.7)
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which in the limit of ǫ → 0 becomes −b/ǫ + · · · . Then from the relation (2.19) we can

check that the order ǫ2 term in the action does not contribute (goes to zero).

Thus for solution 1, the contribution of subleading terms adds up to a (−b) inside the

square brackets in (3.37).

For the 8-point function, we get

−iS = Bǫ

∫ ∞

0

∫ ∞

0
du1du2 {Fb(u1, u2) + F−b(−u1, u2) + F−b(u1,−u2) + Fb(−u1,−u2)}

= −iS4−pt + Bǫ

∫ ∞

0

∫ ∞

0
du1du2 2(Fb(u1, u2) − F−b(u1, u2)) (B.8)

thus the contribution of the subleading terms is twice that of solution 1.

C. Fake cusp calculation

In this appendix we evaluate the contribution of the fake cusps to the 6-point AdS amplitude

defined by y0 = y1|y2|.
But in order to do so we must select a method that will reproduce the correct behaviour

for a correct cusp.

According to eq. (3.21) in [17] (see also eq. (3.29) in [1]), the contribution to the string

action from near a correct cusp is

−iSi,i+1(ǫ) =

√
λDcD

8π

√
1 + ǫ

(1 + ǫ/2)1+ǫ/22ǫ/2
(−si,i+1)

−ǫ/2

∫ 1

0

dY−dY+

(Y−Y+)1+ǫ/2
(C.1)

where Y± are coordinates parallel to the 2 momenta (sides of the cusps). The integration

in the original variables y± was from 0 to the values of the momentum, i.e. the length of

the side of the cusp, except that the solution used was not the exact one for the polygon

Wilson loop, but rather the approximate one for the infinite cusp. Note that the integral

gives (2/ǫ)2 (it’s the product of two identical integrals).

The integration above was done in y± = y0 ± y1 variables (with y2 added), since

the solution used was an infinite cusp with lightlike boundary. But the fake cusp we are

interested in has not only the lightlike boundary along ỹ± = y0±y2, but also the boundary

y0 = 0, y2 = 0, so clearly ỹ± are not good integration variables for the cusp solution.

Rather, we will use y1, y2.

In order to understand the y1, y2 integration procedure better, we will first analyze the

b=0 solution, looking at both the usual (Alday-Maldacena) cusp and the new fake cusp.

The solution is

r2 = (1 + ǫ/2)(1 − y2
1)(1 − y2

2); y0 = y1|y2| (C.2)

The square root in the action (2.9) is (after a bit of algebra)

√

1 +
ǫ

2
(y2

1 + y2
2) (C.3)
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Near a good cusp, e.g. y1 = y2 = 1, we have

r ≃ 2
√

δy1δy2

√

1 + ǫ/2; y0 ≃ 1 − δy1 − δy2

L =

√
1 + ǫdδy1dδy2

(1 + ǫ/2)1+ǫ/2(4δy1δy2)1+ǫ/2
(C.4)

Then the action at the cusp is

−iSi,i+1(ǫ) =

√
λDcD

8π

√
1 + ǫ

(1 + ǫ/2)1+ǫ/22ǫ

∫ 1

0

dδy1dδy2

(δy1δy2)1+ǫ/2
(C.5)

Near a fake cusp, e.g. y2 = 0, y1 = 1, we have

r ≃
√

2δy1

√

1 + ǫ/2; y0 ≃ |δy2|

L =

√

1 + ǫ/2dδy1dδy2

(1 + ǫ/2)1+ǫ/2(2δy1)1+ǫ/2
(C.6)

and the action at the cusp is

−iSi,i+1(ǫ) =

√
λDcD

4π

√

1 + ǫ/2

(1 + ǫ/2)1+ǫ/22ǫ/2

∫ 1

0

dδy1

(δy1)1+ǫ/2

∫ 1

−1
dδy2 (C.7)

which now contains a single divergent integral, so is of order 1/ǫ, not 1/ǫ2.

Now we turn to the nonzero b case. For nonzero b, the equation of the Alday-

Maldacena (4-point function) curve in y0, y1, y2, r coordinates is obtained from (2.14) by

writing tanh u1, tanh u2 as a function of y1, y2 and substituting in r, y0 with the result

y0 =

√
1 + b2

2b

(

1 −
√

1 − 4by1y2

)

r =
1

2b

√

[

4b2y2
2 − (1 −√

1 − 4by1y2)2
] [

4b2y2
1 − (1 −√

1 − 4by1y2)2
]

(1 −√
1 − 4by1y2)

(C.8)

For the 6-point function solution we replace everywhere y2 by |y2|. Near the fake corner

u2 = 0, u1 = +∞ ↔ y2 = 0, y1 = 1 we get (after some algebra)

y0 ≃
√

1 + b2|δy2|(1 − δy1 + b|δy2|)

r ≃
√

1 + ǫ/2
√

2(δy1 − b|δy2|)
(

1 − δy1 − b|δy2|
4

)

(C.9)

and, again after some algebra, we get the Lagrangian

L =

√

1 + ǫ/2(1 + b2)

(1 + ǫ/2)1+ǫ/221+ǫ/2

dδy1dδy2

(dδy1 − b|δy2|)1+ǫ/2
(C.10)

Now we need to change to variables that are parallel to k4, k5. Since the momenta are

kµ
4 =

1

b + 1
(b, 1, . . .); kµ

5 =
1

b + 1
(b,−1, . . .) (C.11)
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we get that the new variables Y1, Y2 that are parallel to k4, k5 and run from 0 to 1 are

defined as

δy1 =
b

b + 1
(Y1 + Y2); δy2 =

1

b + 1
(Y1 − Y2) ⇒

dδy1dδy2 =
2b

(b + 1)2
dY1dY2; (δy1 − b|δy2|) =

2b

b + 1
min{Y1, Y2} (C.12)

Then the action at the fake cusp is

−iSi,i+1 =

√
λDcD

2π

√

1 + ǫ/2(1 + b2)

(1 + ǫ/2)1+ǫ/221+ǫ/2

∫

dδy1dδy2

(δy1 − b|δy2|)1+ǫ/2

=

√
λDcD

2π

√

1 + ǫ/2(1 + b2)

(1 + ǫ/2)1+ǫ/221+ǫ/2

1

b + 1

(

2b

b + 1

)−ǫ/2 −4

ǫ(1 − ǫ/2)
(C.13)

If ǫ ln b < 1 we obtain

−iSi,i+1 ≃
√

λ

2π

2

ǫ

1

b + 1

(πµ

a

)ǫ
(

1 +
ǫ

4
(1 + b2) +

ǫ

2

(

1 − ln
b

b + 1

))

(C.14)

This contribution is indeed of order 1/ǫ as we wanted (since we are missing the 1/ǫ2

term), but the b dependence is incorrect.
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